

MZUZU UNIVERSITY

FACULTY OF SCIENCE, TECHNOLOGY AND INNOVATION

DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

BACHELOR OF SCIENCE IN INFORMATION AND COMMUNICATION TECHNOLOGY

ICT 4801: ARTIFICIAL INTELLIGENCE

END OF SEMESTER EXAMINATION

DATE: JULY, 2019

TIME ALLOWED: 3 HOURS

INSTRUCTIONS

- 1. Answer ALL questions.
- 2. Marks for each question are indicated.
- 3. Write your answers clearly.
- 4. Indicate the question number for each answer..
- 5. This paper contains **THREE** pages. Please check.

1. a. In your own words define the following terms and derivatives, from Artificial Intelligence perspective i. [4 marks] Agent and Agent Function. ii. State and State Space. [4 marks] b. Show how each of the following statements could be true i. Breadth-first search is a special case of uniform-cost search. [2 marks] ii. Breadth-first search, depth-first search, and uniform-cost search are special cases of best-first search. [6 marks] iii. Uniform-cost search is a special case of A* search. [2 marks] c. The heuristic path algorithm is the best-first search in which the objective function is invented as $f(n) = (2 - w) \left[g(n) + \frac{w}{2 - w} h(n) \right]$ where g(n) and h(n) carry their usual meanings. i. Assuming h(n) is admissible, for what values of w is this algorithm guaranteed to be optimal? [3 marks] ii. What kind of search does this algorithm perform when w = 0 and when w = 2? [4 marks] 2. Consider a state space where the start state is the number 1 and the successor function for state n returns two states, namely, numbers 2n and 2n+3. a. Draw the portion of the state space to a depth of 4. [5 marks] What is the size of the state space? [1 marks] c. Suppose the goal state is 55. List the order in which nodes will be visited for i. Breadth-first search. [2 marks] ii. Depth-limited search with limit 4. [6 marks]

Page 1 of 3

d. What is the branching factor in each direction if the bidirectional search is used?

iii.

Iterative deepening search.

[9 marks]

[2 marks]

3. Using your understanding of propositional logic syntax/semantics and/or sample rules of inference answer the following questions. a. Entailment (=) is an important concept in propositional logic. Define the following concepts in terms of the entailment concept. Equivalence of any two sentences $(\alpha \equiv \beta)$. i. [3 marks] ii. Deduction theorem $(\alpha \Rightarrow \beta)$. [2 marks] b. Prove the following assertions i. α is valid if and only if $True \models \alpha$. [4 marks] ii. $\alpha \vDash \beta$ if and only if the sentence $(\alpha \land \neg \beta)$ is unsatisfiable. [4 marks] c. Resolution inference algorithm proves that a knowledge base, KB, entails a query, Q if $KB \land \neg Q$ is unsatisfiable. Prove that $KB = (\alpha \Leftrightarrow (\beta \lor \theta)) \land \neg \alpha$ entails $Q = \neg \beta$. [12 marks] 4. Represent the following sentences in First-Order Logic using a consistent vocabulary defined in Table 1 in Appendix A. Some students took History in Semester6. [2 marks] b. Every student who takes History passes it. [3 marks] Only one student took Physics in Semester6. [5 marks] d. The best score in History is always greater than the best score in Physics. [4 marks] e. A person born in Malawi, each of whose parents is a Malawi citizen or a Malawi resident, is a Malawi citizen by birth. [6 marks]

f. Politicians can fool some of the people all of the time, and they can fool all of the people some of the

[5 marks]

time, but they can't fool all the people all the time.

Appendix A

Table 1: Basic Vocabulary	
P	: Physics
H	: History
<i>S6</i>	: Semester6
Mlw	: Malawi
Br	: Birth
Takes(x,c,s)	student x takes course c in semester s
Passes(x,c,s)	student x passes course c in semester s
Fools(x, y, t)	:person x fools person y at time t
Score(x,c,s)	student x passes course c in semester s
Born(x,c)	: person x is born in country c
Parent(x,y)	: x is parent of y
Resident(x,c)	x is a resident of country c
Citizen(x,c,r)	: x is citizen of country c for reason r
x > y	: x is greater than y
Person(x), $Student(x)$, $Politician(x)$: predicates satisfied by members of	
the corresponding categories	
•	

END OF QUESTION PAPER